HOWTO zu den Spezialitdten von Python

(C) 2016-2024 T.Birnthaler/H.Gottschalk <howtos(at)ostc.de>
OSTC Open Source Training and Consulting GmbH
http://www.ostc.de

Dieses Dokument beschreibt die Besonderheiten von Python im Vergleich zu
anderen Programmiersprachen oder Skriptsprachen.

* Conceived as TEACHING/LEARNING/TRAINING language (in the beginning)
--> Easy to learn syntax
--> Indentation counts --> Makes Copy-and-Paste difficult
—--> Documentation easily integratable

—-> Educational aspects important (e.g. indentation, very clear error messages)

* FULLY object oriented programming language (OOP)
+ EVERYTHING is an OBJECT (even numbers, functions, classes, modules, ...)
--> Functions, classes, modules, ... are "FIRST CLASS" objects!
Can be: created at runtime
passed as parameters to and returned from functions
assigned to variables
+ Each built-in DATATYPE is a CLASS
--> Self defined CLASSES behave like built-in datatypes!
--> May be used to inherit from
BASE CLASS of ever class is "object"
All MEMBER FUNCTIONS are VIRTUAL
All MEMBERS are PUBLIC (no real encapsulation)
-—> Naming conventions cause PRIVATE/PROTECTED members
+ DUCK TYPING: if it looks and behaves like a duck, it's a duck
interface is the same --> undistinguishable
+ MONKEY PATCHING (classes/instances may be dynamically changed)

+ + +

* EVERYTHING (EACH OBJECT)

+ Has a fixed DATATYPE: type(OBJ)
+ Has a fixed unique ID: id(OBJ) = memory address
+ Has a REFERENCE COUNTER (counts names pointing to it): sys.refcounter (OBJ)
+ May be converted to STRING by str(OBJ) / repr(OBJ)
+ May be converted to BOOL by bool(0OBJ)
+ May be printed out by print(...)
+ Has a BOOLEAN VALUE True/False in boolean context
+ May be compared to any other object by == (value equal)
and != (value different)
+ May be compared to any other object by is (identical object)

and is not (different object)
+ May have ATTRIBUTES (key-value pairs) associated with it
(built-in datatypes NoneType int float complex str tuple list dict don't!)

* SYNTAX
+ INDENTATION is part of the syntax + defines NESTING STRUCTURE (BLOCK)
(colon ":" <-> ONE indented statement needed --> keyword "pass" if empty)
--> Pretty-printer (automatic indentation) impossible! --> do it yourself!
-—> No automatic indentation by IDE/Tool possible!
--> Only ignored between parentheses ([{ ... } 1)

between multiline string quotes e
in empty lines and before comments #....
next line after line continuation "\" at line end
+ One line = one statement (normally)
+ No special statement terminator but line end
(but ";" is statement separator to combine several statements on one line)

* Token = Keywords + Operators + Identifiers + ...
UPPER/lower case counts EVERYWHERE (identifier, keyword, module name, ...)

75 BUILT-IN FUNCTIONS (non-OOP, may change their meaning, but shouldn't)
55 OPERATORS mapped to "magic methods" --> redefinable for own datatype
94 MAGIC METHODS (called automatically by built-in function, operator,
object creation, iteration, function entry/exit, ...)

Identifier

- XXX used as identifier if XXX is a KEYWORD

+ 4+ ++ +

+

35 KEYWORDS (only) have a fixed meaning (all other IDENTFIERS allow change)

- __ XXX are python INTERNAL names ("MAGIC METHODS, there are a lot of them!)

- __ XXX are private names of classes (mangled --> CLASS_ XXX)

- _XXX are protected names of classes or not exported names of modules
- _used as syntactically necessary identifier if value not needed

- contains result of last expression in interactive interpreter

- _ often used with internationalization (il8n) and localization (110n)

EVERYTHING is an OBJECT (even numbers, functions, classes, modules, ...)
--> Functions are "FIRST CLASS" objects!

Each DATATYPE is a CLASS
--> Self defined CLASSES behave like built-in datatypes!

Each VALUE/OBJECT/INSTANCE knows it's DATATYPE + number of REFERENCES to it
--> Automatic type checking during program run
—--> Automatic reference counting + object destroyance + garbage collection!

IDENTIFIER are just REFERENCES to OBJECTS (SYMBOL TABLE entry)
(means VARIABLES store references to OBJECTS)

--> So Variables are ALWAYS initialized

--> So any identifier may point to any object during run-time!
—-> Any identifier may be redefined any time!
--> Any identifier may be deleted by "del ...

(removed from symbol table)!

DATATYPE of VALUE is defined by VALUE SYNTAX or explicit DATATYPE CONVERSION
--> No variable declaration (but TYPE HINTS since Python 3.5/3.6/3.7)

NO AUTOMATIC DATATYPE CONVERSION --> has to be done MANUALLY --- but:
+ Numeric Types int <-> float <-> complex <-> bool in expressions
(boolean True/False --> 1/0 in expressions)
+ ANY DATATYPE may be converted --> bool (e.g. in boolean context if ...:)
+ ANY DATATYPE may be converted --> str (e.g. autom. in function print())

EACH OBJECT

+ Has a datatype: type(OBJ)

+ Has a unique id: id(OBJ) = memory address

+ Has a reference counter: contains number of references to it
+ May be converted to a STRING by str(OBJ) / repr(OBJ)

+ May be printed out by print(...)

+ Has a boolean value True/False in boolean context

+ May be compared to any other object by == (value egal)

and != (value different)
+ May be compared to any other object by is (identical object)

and is not (different object)
+ May have ATTRIBUTES (key-value pairs)

Lots of RUN-TIME CHECKS (automatically and permanent)

+ Access/usage of values datatype + functions + operators

+ Access/usage of index/key

+ Access/usage of mutable/im-mutable = read-write/read-only datatypes
--> NoneType bool int float complex str bytes tuple frozenset ...

+ Datatype conversion possible
+ Operator applyable to operand datatypes
+ Reference counter == 0 --> Object may be destroyed and its memory freed

Any RUN-TIME ERROR cancels program execution and prints out

+ Script filename

+ Line number

+ Error class (e.g. "FileNotFoundError")

+ Error message (e.g. "division by zero not allowed")

+ Traceback (call stack = way through function calls to error code line)

Error handling is always done by exception handling or context object
--> "try-except" and "with"
--> Separate "real" code and error handling

Datatype names may be used as FUNCTION to do CONVERSION to that datatype
(e.g. datatype int --> conversion function int("1234") --> 1234)
+ Create Objects from Class-Name

Impossible CONVERSIONS are not allowed

+ "None" cannot be used in expressions

+ Any data from outside is always of datatype "str" (argv, environ, ...)

+ i = int(input("Please give a number: ")) crashes on input of a float "1.0"

Functions

+ Definition + call ALWAYS need PARENTHESES (...)

—-> WITHOUT PARENTHESES --> reference to funktion object!

Always have a RETURN VALUE (at least "None") which may always be ignored
Allow ANY OBJECT as parameter or return value

Allow positional and named parameters

Allow necessary and optional parameters

++ + +

+
+

Allow any number of positional/named parameters
Decorators = wrap function by "enhancer function" (cascadable)

Lot of SEQUENCES (indexed, ordered, similar behaviour, similar syntax)

+ 4+ + 4+ 4+

str = sequence of chars (read-only)
bytes = sequence of bytes (read-only)
tuple = sequence of elements/objects (read-only)
list = sequence of elements/objects (read-write)
bytearray = sequence of bytes (read-write)
file = sequence of lines separated by "\n" or "\r\n")

Tries to delay/retard any work as long as possible

Call by reference

Assignment --> COW = Copy on Write (late binding)
Tuple/list/dictionary comprehension

Iterators

Generators (map, filter, reduce, zip, ...)

DON'T COUNT yourself, let python do it for you via

+ 4+ 4+ + +

for-loop over sequences or collections or files
for (i,v) in enumerate(SEQ): ...

Function range(N,M,S)

Function slice(N,M,S)

Slicing [N:M:S]

DOCUMENTATION very easy

+
+
+

Integrated via DOCSTRINGS into source code (reStructured)
Generatable from source code via "pydoc" or "easydoc" or "Sphinx"
Done by ASCII or reStructured or ... text

REFLECTION / SELFINSPECTION possible

SR S ik S S SR S S S

Function type()

Function id()

Function dir()

Function help()

Function callable()

Function isinstance()

Function issubclass()

List of variables in namespace by vars() globals() locals()
Attributes: name = class = weak = call

Attribute dictionary: dict

Symbol table dictionary: _ dir (Namespace)

Attribute access: getattr() setattr() hasattr() delattr()
Class Method Resolution Order: CLASS. mro CLASS.mro()

Declarative instead of procedural programming

+
+
+

Tuple/List/Dictionary comprehension (declarative instead of functional)
Generators
Decorators

Specialities

+

+

+ 4+ +

+

Datatypes are IM-MUTABLE/READ-ONLY (bool int float complex str tuple)
or MUTABLE/READ-WRITABLE (list dict set)

Only one type of value transfer: CALL BY REFERENCE

--> Always references are used/moved (NEVER VALUES)

Assignment ASSIGNS new reference to variable name (COW = copy on write)
Memory allocation/deallocation done by python itself (garbage collection)
There is no empty statement, keyword "pass" needed

"else" may be used at the end of most control structures

(if, for, while, try, with, ...)

String technique if identifer "no yet" usable but needed

- slots

- Jgetattr, setattr, delattr, hasattr, ...

