
HOWTO Specialities of Python
============================

(C) 2016-2024 T.Birnthaler/H.Gottschalk <howtos(at)ostc.de>
 OSTC Open Source Training and Consulting GmbH
 http://www.ostc.de

This document describes the specialities of Python compared to other
programming or script languages.

--

* Conceived as TEACHING/LEARNING/TRAINING language (in the beginning)
 --> Educational aspects important
 --> Easy to learn syntax (e.g. no block braces, no statement terminators)
 --> Indentation counts --> makes Copy-and-Paste difficult
 --> One line = one statement
 --> Documentation easily integratable
 --> Functions are "FIRST CLASS" objects!
 (same USAGE and BEHAVIOUR as DATA)

* FULLY object oriented programming language (OOP)
 + EVERYTHING is an OBJECT (number, string, function, datatype, class, module)
 --> Number, function, datatype, class, module are "FIRST CLASS" objects!
 Can be: created at runtime
 passed as parameters to and returned from functions
 assigned to variables
 + Each built-in DATATYPE is a CLASS
 --> Self defined CLASSES behave like built-in datatypes!
 --> Usable as base class for inheritance
 + BASE CLASS of each class is "object" (nice name!)
 + All MEMBERS are PUBLIC (no real encapsulation)
 --> Real ENCAPSULATION possible by naming conventions and __slots__

* FULLY DYNAMICAL
 + All MEMBER FUNCTIONS are VIRTUAL
 + DUCK TYPING: if it looks and behaves like a duck, it's a duck
 same interface --> undistinguishable
 + MONKEY PATCHING: classes/instances may be dynamically changed

* SYNTAX
 + UPPER/lower case counts EVERYWHERE (identifier, keyword, module name, ...)
 + INDENTATION is part of syntax + defines NESTING STRUCTURE (BLOCK)
 (colon ":" <-> indented statement(s) needed --> keyword "pass" if empty)
 --> Pretty-printer (automatic indentation) impossible! --> do it yourself!
 --> No automatic indentation by IDE/Tool possible!
 --> Only ignored between parentheses ([{ ... }])
 between multiline string quotes """...""" '''...'''
 in empty lines and comment lines #....
 in lines after line with line continuation "\" at end
 + One line = one statement (normally)
 + No special statement terminator but line end
 (";" may separate statements to combine several ones on one line)

* Token = Keywords + Operators + Identifiers + ...
 + 35 KEYWORDS (only) have a fixed meaning (all other IDENTIFIERS may change)
 + 75 BUILT-IN FUNCTIONS (GENERIC, non-OOP, may change meaning, but shouldn't)
 + 55 OPERATORS mapped to MAGIC METHODS --> redefinable for own datatype
 + 94 MAGIC METHODS (called automatically by built-in function, operator,
 object creation, iteration, function entry/exit, ...)
 + Identifiers are classified by "NAMING CONVENTIONS" --> PEP8
 - Use XXX_ as identifier if XXX is a KEYWORD (may be no good idea)
 - __XXX__ are INTERNAL names ("MAGIC METHODS", there are a lot of them!)
 - __XXX are PRIVATE names of classes (mangled --> _CLASS__XXX)
 - _XXX are PROTECTED names of classes or not exported names of modules
 - XXX are PUBLIC names of classes
 - _ used as syntactically necessary identifier if value not needed
 - _ contains result of last expression in interactive interpreter
 - _ often used for internationalization (i18n) and localization (l10n)

* Each DATATYPE is a CLASS
 --> Self defined CLASSES behave like built-in datatypes!

* Each VALUE/OBJECT/INSTANCE knows it's DATATYPE + number of REFERENCES to it
 --> Automatic type checking during program run
 --> Automatic reference counting + object destroying + garbage collection!

* IDENTIFIER contain just REFERENCES to OBJECTS (SYMBOL TABLE entry)
 (means VARIABLE stores reference to OBJECT)
 --> So variables are ALWAYS initialized!
 --> So any identifier may point to any object during run-time!
 --> Any identifier may be redefined any time!
 --> Any identifier may be deleted by "del" (removed from symbol table)!

* DATATYPE of VALUE is defined by VALUE SYNTAX or explicit DATATYPE CONVERSION
 --> No variable declaration (but TYPE HINT/ANNOTATION since Python 3.5-3.10)

* NO AUTOMATIC DATATYPE CONVERSION --> has to be done MANUALLY --- but:
 + Numeric Types int <-> float <-> complex <-> bool in expressions
 (boolean True/False --> 1/0 in expressions)
 + ANY DATATYPE automatically converted to bool in boolean context if/while ...:
 + ANY DATATYPE automatically converted to str by function print(...)
 + ANY DATATYPE comparable by "==" "!=" "is" "is not" to any other DATATYPE

* EACH OBJECT
 + Has a DATATYPE: type(OBJ)
 + Has a UNIQUE ID (memory address): id(OBJ)
 + Has a REFERENCE COUNTER (counts names pointing to it): sys.getrefcount(OBJ)
 + Has a memory size (in bytes): sys.getsizeof(OBJ)
 + May be converted to STRING by: str(OBJ) repr(OBJ)
ascii(OBJ)
 + May be PRINTED out: print(OBJ)
 + May be converted to BOOL: bool(OBJ)
 + Has a boolean value True/False in BOOLEAN CONTEXT: if while and or not
 + May be COMPARED BY VALUE to any other object by == (type AND value equal)
 and != (type OR value different)
 + May be COMPARED BY ID to any other object by is (identical object)
 and is not (different object)
 + May have ATTRIBUTES (key-value pairs) associated with it
 (not for built-in datatypes because of space and performance reasons:
 NoneType int float complex str tuple list dict set frozenset bytes bytearray ...)

* Lots of RUN-TIME CHECKS (automatically and permanent)
 + Access/usage of values datatype + functions + operators
 + Access/usage of index/key
 + Access/usage of mutable/im-mutable = read-write/read-only datatypes
 --> NoneType bool int float complex str bytes tuple frozenset ...
 + Datatype conversion possible
 + Operator applyable to operand datatypes
 + Reference counter == 0 --> Object may be destroyed and its memory freed

* Any RUN-TIME ERROR cancels program execution and prints out
 + Script filename
 + Line number
 + Error class (e.g. "FileNotFoundError")
 + Error message (e.g. "division by zero not allowed")
 + Traceback (call stack = way through function calls to error code line)
 + Catching via "try...except" necessary to continue program

* Error handling always done by exception handling or context object
 --> "try-except" and "with"
 --> Clear separation of "real" code and "error handling" code

* Datatype name usable:
 + to CREATE OBJECT of that type: class Robot --> r1 = Robot(...)
 + as CONVERSION FUNCTION to that datatype (e.g. int("123") --> 123 (int))

* Impossible CONVERSIONS are not allowed
 + "None" cannot be used in expressions
 + Data from outside is always of datatype "str" (sys.argv, os.environ, ...)
 + i = int(input("Please give a number: ")) crashes on input of a float "1.0"

* Functions
 + Definition + call ALWAYS need PARENTHESES (...)
 --> WITHOUT PARENTHESES --> reference to function object!
 + Always have a RETURN VALUE (at least "None") which may be ignored
 + Allow ANY OBJECT as parameter or return value (symmetric)
 + Allow positional and named parameters
 + Allow necessary and optional parameters
 + Allow any number of parameters
 + Decorators = wrap function by "enhancer function" (cascadable)
 + No function OVERLOADING possible (SIGNATURE = just function name)

 (but DISPATCHING via analysing number/type of parameters)

* Lot of SEQUENCES (indexed, ordered, similar behaviour, same syntax)
 + str = sequence of chars (read-only)
 + bytes = sequence of bytes (read-only)
 + tuple = sequence of elements/objects (read-only)
 + list = sequence of elements/objects (read-write)
 + bytearray = sequence of bytes (read-write)
 + file = sequence of lines separated by "\n" or "\r\n" (read or write)
 + array = sequence of int/float numbers (read-write)

* Tries to delay/retard any work as long as possible
 + Call by reference
 + Assignment --> COW = Copy on Write (late binding)
 + Tuple/list/dictionary Comprehension
 + Iterators
 + Generators

* DON'T COUNT yourself, let Python do it for you via
 + for-loop over sequences or collections or files
 + for (i,v) in enumerate(SEQ): ...
 + function range(N,M,S)
 + slicing [N:M:S]

* DOCUMENTATION very easy
 + Integrated via DOCSTRINGS into source code (reStructuredText)
 + Generatable from source code via "pydoc", "easydoc", "Sphinx", ...
 + Done by ASCII text or reStructuredText or ...

* REFLECTION / INTROSPECTION / SELFDESCRIPTION possible
 + Function type()
 + Function id()
 + Function dir()
 + Function help()
 + Function callable()
 + Function Attributes __code__ __defaults__ __kwdefaults__ __annotations__
__closure__
 + Function isinstance()
 + Function issubclass()
 + List of variables in namespace by globals() locals() vars()
 + Attributes: __name__ __qualname__ __class__ __weakref__
 + Attribute dictionary: __dict__
 + Attribute slots: __slots_
 + Documentation: __doc__
 + Symbol table dictionary: __dir__ (Namespace)
 + Attribute access: hasattr() getattr() setattr() delattr()
 + Iterator protocol: iter() next() send() throw() StopIteration
 + Generator protocol: yield (comprehension)
 + Buffer protocol:
 + Descriptor protocol: __get__() __set__() __delete__()

* Declarative instead of procedural programming
 + Generator/List/Dictionary/Set Comprehension (declarative instead of functional)
 + Decorators

* Specialities
 + Datatypes are IM-MUTABLE/READ-ONLY (bool int float complex str tuple bytes
frozenset)
 or MUTABLE/READ-WRITABLE (list set dict bytearray)
 + Only one type of value transfer: CALL BY REFERENCE
 --> Always references are used/moved (NEVER VALUES)
 + Assignment ASSIGNS new reference to variable name (COW = copy on write)
 + Memory allocation/deallocation done by Python itself (garbage collection)
 + There is no empty statement, keyword "pass" needed
 + "else" may be used at the end of several control structures
 (if, for, while, try, with, ...)

