HOWTO Specialities of Python

(C) 2016-2025 T.Birnthaler/H.Gottschalk <howtos(at)ostc.de>
OSTC Open Source Training and Consulting GmbH
http://www.ostc.de

This document describes the specialities of Python compared to other
programming or script languages.

* Conceived as TEACHING/LEARNING/TRAINING language (in the beginning)
——> Educational aspects important
——> Easy to learn syntax (e.g. no block braces, no statement terminators)
——> Indentation counts —-—> makes Copy-and-Paste difficult
——> One line = one statement
——> Documentation easily integratable
——> Functions are "FIRST CLASS" objects!
(same USAGE and BEHAVIOUR as DATA)

* FULLY object oriented programming language (OOP)
+ EVERYTHING is an OBJECT (number, string, function, datatype, class, module)
——> Number, function, datatype, class, module are "FIRST CLASS" objects!
Can be: created at runtime
passed as parameters to and returned from functions
assigned to variables
+ Each built-in DATATYPE is a CLASS
——> Self defined CLASSES behave like built-in datatypes!
——> Usable as base class for inheritance
+ BASE CLASS of each class is "object" (nice name!)
+ A1l MEMBERS are PUBLIC (no real encapsulation)
——> Real ENCAPSULATION possible by naming conventions and _ slots_

* FULLY DYNAMICAL
+ A1l MEMBER FUNCTIONS are VIRTUAL
+ DUCK TYPING: if it looks and behaves like a duck, it's a duck
same interface ——> undistinguishable
+ MONKEY PATCHING: classes/instances may be dynamically changed

* SYNTAX
+ UPPER/lower case counts EVERYWHERE (identifier, keyword, module name, ...)
+ INDENTATION is part of syntax + defines NESTING STRUCTURE (BLOCK)

(colon ":" <—> indented statement(s) needed ——> keyword "pass" if empty)
——> Pretty-printer (automatic indentation) impossible! —-—> do it yourself!
——> No automatic indentation by IDE/Tool possible!

-—> Only ignored between parentheses ( [ { ... } 1)

between multiline string quotes
in empty lines and comment lines #....
in lines after line with line continuation "\" at end
+ One line = one statement (normally)
+ No special statement terminator but line end
(";" may separate statements to combine several ones on one line)

* Token = Keywords + Operators + Identifiers + ...
+ 35 KEYWORDS (only) have a fixed meaning (all other IDENTIFIERS may change)
+ 75 BUILT-IN FUNCTIONS (GENERIC, non-00P, may change meaning, but shouldn't)
+ 55 OPERATORS mapped to MAGIC METHODS ——> redefinable for own datatype
+ 94 MAGIC METHODS (called automatically by built-in function, operator,
object creation, iteration, function entry/exit, ...)
+ Identifiers are classified by "NAMING CONVENTIONS" ——> PEP8
Use XXX_ as identifier if XXX is a KEYWORD (may be no good idea)
— __ XXX__ are INTERNAL names ("MAGIC METHODS", there are a lot of them!)
— __ XXX are PRIVATE names of classes (mangled ——> _CLASS__ XXX)
— _XXX are PROTECTED names of classes or not exported names of modules
XXX are PUBLIC names of classes



— _ used as syntactically necessary identifier if value not needed
— _ contains result of last expression in interactive interpreter
- _ often used for internationalization (i18n) and localization (110@n)

* Each DATATYPE is a CLASS
——> Self defined CLASSES behave like built-in datatypes!

* Each VALUE/OBJECT/INSTANCE knows it's DATATYPE + number of REFERENCES to it
——> Automatic type checking during program run
——> Automatic reference counting + object destroying + garbage collection!

* IDENTIFIER contain just REFERENCES to OBJECTS (SYMBOL TABLE entry)
(means VARIABLE stores reference to OBJECT)
——> S0 variables are ALWAYS initialized!
——> S0 any identifier may point to any object during run-time!
——> Any identifier may be redefined any time!
——> Any identifier may be deleted by "del" (removed from symbol table)!

* DATATYPE of VALUE is defined by VALUE SYNTAX or explicit DATATYPE CONVERSION
——> No variable declaration (but TYPE HINT/ANNOTATION since Python 3.5-3.10)

* NO AUTOMATIC DATATYPE CONVERSION -—> has to be done MANUALLY -—- but:
+ Numeric Types int <—> float <—> complex <—> bool in expressions
(boolean True/False ——> 1/0 in expressions)
+ ANY DATATYPE automatically converted to bool in boolean context if/while ...:
+ ANY DATATYPE automatically converted to str by function print(...)

+ ANY DATATYPE comparable by '"==" "I=" "is" "is not" to any other DATATYPE
* EACH OBJECT

+ Has a DATATYPE: type(0BJ)

+ Has a UNIQUE ID (memory address): id(0BJ)

+ Has a REFERENCE COUNTER (counts names pointing to it): sys.getrefcount(0BJ)

+ Has a memory size (in bytes): sys.getsizeof(0BJ)

+ May be converted to STRING by: str(0BJ) repr(0BJ)
ascii(0BJ)

+ May be PRINTED out: print(0BJ)

+ May be converted to BOOL: bool1(0BJ)

+ Has a boolean value True/False in BOOLEAN CONTEXT: if while and or not

+ May be COMPARED BY VALUE to any other object by == (type AND value equal)

and != (type OR value different)
+ May be COMPARED BY ID to any other object by is (identical object)
and is not (different object)
+ May have ATTRIBUTES (key-value pairs) associated with it

(not for built-in datatypes because of space and performance reasons:
NoneType int float complex str tuple list dict set frozenset bytes bytearray ...

* Lots of RUN-TIME CHECKS (automatically and permanent)
+ Access/usage of values datatype + functions + operators
+ Access/usage of index/key
+ Access/usage of mutable/im-mutable = read-write/read-only datatypes
——> NoneType bool int float complex str bytes tuple frozenset ...
+ Datatype conversion possible
+ Operator applyable to operand datatypes
Reference counter == @ ——> Object may be destroyed and its memory freed

+

Any RUN-TIME ERROR cancels program execution and prints out

+ Script filename

+ Line number

+ Error class (e.g. "FileNotFoundError")

+ Error message (e.g. '"division by zero not allowed")

+ Traceback (call stack = way through function calls to error code line)
+ Catching via "try...except" necessary to continue program

* Error handling always done by exception handling or context object
——> "try-except" and "with"
——> (Clear separation of "real" code and "error handling" code



Datatype name usable:
+ to CREATE OBJECT of that type: class Robot ——> rl = Robot(...)
+ as CONVERSION FUNCTION to that datatype (e.g. int("123") —-—> 123 (int))

Impossible CONVERSIONS are not allowed

+ "None" cannot be used in expressions

+ Data from outside is always of datatype "str" (sys.argv, os.environ, ...)
+ i = int(input("Please give a number: ")) crashes on input of a float "1.0"

Functions

+ Definition + call ALWAYS need PARENTHESES (...)

——> WITHOUT PARENTHESES ——> reference to function object!

Always have a RETURN VALUE (at least "None") which may be ignored
Allow ANY OBJECT as parameter or return value (symmetric)

Allow positional and named parameters

Allow necessary and optional parameters

Allow any number of parameters

Decorators = wrap function by "enhancer function" (cascadable)

No function OVERLOADING possible (SIGNATURE = just function name)
(but DISPATCHING via analysing number/type of parameters)

+ 4+ + + 4+ 4+

Lot of SEQUENCES (indexed, ordered, similar behaviour, same syntax)

+ str = sequence of chars (read-only)
+ bytes = sequence of bytes (read-only)
+ tuple = sequence of elements/objects (read-only)
+ list = sequence of elements/objects (read-write)
+ bytearray = sequence of bytes (read-write)
+ file = sequence of lines separated by "\n" or "\r\n" (read or write)
+ array = sequence of int/float numbers (read-write)

Tries to delay/retard any work as long as possible
Call by reference

+

+ Assignment ——> COW = Copy on Write (late binding)
+ Tuple/list/dictionary Comprehension

+ Iterators

+ Generators

DON'T COUNT yourself, let Python do it for you via
+ for-loop over sequences or collections or files
+ for (i,v) in enumerate(SEQ):

+ function range(N,M,S)

+ slicing [N:M:S]

DOCUMENTATION very easy

+ Integrated via DOCSTRINGS into source code (reStructuredText)
+ Generatable from source code via "pydoc", "easydoc", "Sphinx",
+ Done by ASCII text or reStructuredText or ...

REFLECTION / INTROSPECTION / SELFDESCRIPTION possible
Function type()

Function id()

Function dir()

Function help()

Function callable()

Function Attributes __code__ _ defaults__ __ kwdefaults__ __annotations__
losure__

Function isinstance()

Function issubclass()

List of variables in namespace by globals() locals() vars()
Attributes: __name__ _ qualname__ _ class__ _ weakref__
Attribute dictionary: _ dict__

Attribute slots: __slots_

Documentation: __doc__

Symbol table dictionary: __dir__ (Namespace)

Attribute access: hasattr() getattr() setattr() delattr()

+ A+ A+ F O+ A+



Iterator protocol: iter() next() send() throw() StopIteration
Generator protocol: yield (comprehension)

Buffer protocol:

Descriptor protocol: __get_ () __set_ () __delete_ ()

+ + + +

* Declarative instead of procedural programming
+ Generator/List/Dictionary/Set Comprehension (declarative instead of functional)
+ Decorators

* Specialities

+ Datatypes are IM-MUTABLE/READ-ONLY (bool int float complex str tuple bytes
frozenset)

or MUTABLE/READ-WRITABLE (list set dict bytearray)

+ Only one type of value transfer: CALL BY REFERENCE
-—> Always references are used/moved (NEVER VALUES)
Assignment ASSIGNS new reference to variable name (COW = copy on write)
Memory allocation/deallocation done by Python itself (garbage collection)
There is no empty statement, keyword 'pass'" needed
"else" may be used at the end of several control structures
(if, for, while, try, with, ...)

+ + + +



